Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Biol Direct ; 18(1): 84, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062477

RESUMO

BACKGROUND: Alström syndrome (ALMS) is a rare autosomal recessive disease that is associated with mutations in ALMS1 gene. The main clinical manifestations of ALMS are retinal dystrophy, obesity, type 2 diabetes mellitus, dilated cardiomyopathy and multi-organ fibrosis, characteristic in kidneys and liver. Depletion of the protein encoded by ALMS1 has been associated with the alteration of different processes regulated via the primary cilium, such as the NOTCH or TGF-ß signalling pathways. However, the cellular impact of these deregulated pathways in the absence of ALMS1 remains unknown. METHODS: In this study, we integrated RNA-seq and proteomic analysis to determine the gene expression profile of hTERT-BJ-5ta ALMS1 knockout fibroblasts after TGF-ß stimulation. In addition, we studied alterations in cross-signalling between the TGF-ß pathway and the AKT pathway in this cell line. RESULTS: We found that ALMS1 depletion affects the TGF-ß pathway and its cross-signalling with other pathways such as PI3K/AKT, EGFR1 or p53. In addition, alterations associated with ALMS1 depletion clustered around the processes of extracellular matrix regulation and lipid metabolism in both the transcriptome and proteome. By studying the enriched pathways of common genes differentially expressed in the transcriptome and proteome, collagen fibril organisation, ß-oxidation of fatty acids and eicosanoid metabolism emerged as key processes altered by the absence of ALMS1. Finally, an overactivation of the AKT pathway was determined in the absence of ALMS1 that could be explained by a decrease in PTEN gene expression. CONCLUSION: ALMS1 deficiency disrupts cross-signalling between the TGF-ß pathway and other dependent pathways in hTERT-BJ-5ta cells. Furthermore, altered cross-signalling impacts the regulation of extracellular matrix-related processes and fatty acid metabolism, and leads to over-activation of the AKT pathway.


Assuntos
Síndrome de Alstrom , Diabetes Mellitus Tipo 2 , Humanos , Metabolismo dos Lipídeos , Diabetes Mellitus Tipo 2/metabolismo , Proteoma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-akt , Proteínas de Ciclo Celular/metabolismo , Síndrome de Alstrom/genética , Síndrome de Alstrom/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Matriz Extracelular/metabolismo
2.
Genes (Basel) ; 14(10)2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895315

RESUMO

Pulmonary arterial hypertension (PAH) is an infrequent disorder characterized by high blood pressure in the pulmonary arteries. It may lead to premature death or the requirement for lung and/or heart transplantation. Genetics plays an important and increasing role in the diagnosis of PAH. Here, we report seven additional patients with variants in SOX17 and a review of sixty previously described patients in the literature. Patients described in this study suffered with additional conditions including large septal defects, as described by other groups. Collectively, sixty-seven PAH patients have been reported so far with variants in SOX17, including missense and loss-of-function (LoF) variants. The majority of the loss-of-function variants found in SOX17 were detected in the last exon of the gene. Meanwhile, most missense variants were located within exon one, suggesting a probable tolerated change at the amino terminal part of the protein. In addition, we reported two idiopathic PAH patients presenting with the same variant previously detected in five patients by other studies, suggesting a possible hot spot. Research conducted on PAH associated with congenital heart disease (CHD) indicated that variants in SOX17 might be particularly prevalent in this subgroup, as two out of our seven additional patients presented with CHD. Further research is still necessary to clarify the precise association between the biological pathway of SOX17 and the development of PAH.


Assuntos
Cardiopatias Congênitas , Defeitos dos Septos Cardíacos , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/diagnóstico , Hipertensão Pulmonar Primária Familiar , Artéria Pulmonar , Fatores de Transcrição SOXF/genética
3.
J Med Genet ; 61(1): 18-26, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37321834

RESUMO

BACKGROUND: Alström syndrome (ALMS; #203800) is an ultrarare monogenic recessive disease. This syndrome is associated with variants in the ALMS1 gene, which encodes a centrosome-associated protein involved in the regulation of several ciliary and extraciliary processes, such as centrosome cohesion, apoptosis, cell cycle control and receptor trafficking. The type of variant associated with ALMS is mostly complete loss-of-function variants (97%) and they are mainly located in exons 8, 10 and 16 of the gene. Other studies in the literature have tried to establish a genotype-phenotype correlation in this syndrome with limited success. The difficulty in recruiting a large cohort in rare diseases is the main barrier to conducting this type of study. METHODS: In this study we collected all cases of ALMS published to date. We created a database of patients who had a genetic diagnosis and an individualised clinical history. Lastly, we attempted to establish a genotype-phenotype correlation using the truncation site of the patient's longest allele as a grouping criteria. RESULTS: We collected a total of 357 patients, of whom 227 had complete clinical information, complete genetic diagnosis and meta-information on sex and age. We have seen that there are five variants with high frequency, with p.(Arg2722Ter) being the most common variant, with 28 alleles. No gender differences in disease progression were detected. Finally, truncating variants in exon 10 seem to be correlated with a higher prevalence of liver disorders in patients with ALMS. CONCLUSION: Pathogenic variants in exon 10 of the ALMS1 gene were associated with a higher prevalence of liver disease. However, the location of the variant in the ALMS1 gene does not have a major impact on the phenotype developed by the patient.


Assuntos
Síndrome de Alstrom , Humanos , Síndrome de Alstrom/genética , Síndrome de Alstrom/patologia , Proteínas de Ciclo Celular/genética , Fenótipo , Éxons , Estudos de Associação Genética
4.
Methods Cell Biol ; 176: 125-137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37164534

RESUMO

Bardet-Biedl syndrome (BBS) is a rare genetic disease of the group of ciliopathies, a group of pathologies characterized mainly by defects in the structure and/or function of primary cilia. The main features of this ciliopathy are retinal dystrophy, obesity, polydactyly, urogenital and renal abnormalities, and cognitive impairment, commonly accompanied by various secondary features, making clear the extensive clinical heterogeneity associated with this syndrome, which, together with the frequent overlapping phenotype with other ciliopathies, greatly complicates its diagnosis. Patients are mainly detected by their pediatrician at quite early ages, usually between 2 and 6years. The pediatrician, given the main symptoms they present, usually refers patients to a specialist. Personalized medicine brought diagnosis closer to many patients who lacked it. It usually presents an autosomal recessive mode of inheritance, but in recent years several authors have proposed more complex inheritance models to explain the frequent inter- and intra-familial clinical variability. The main molecular techniques used for diagnosis are gene panels, the clinical exome and, in certain cases, the patient's complete genome. Although numerous studies have contributed to defining the role of the different BBS genes and designing various strategies for the molecular diagnosis of BBS, as well as delving into the functions performed by these proteins, these advances have not been sufficient to develop a complete treatment for this syndrome. and to be able to offer patients some therapeutic options.


Assuntos
Síndrome de Bardet-Biedl , Humanos , Síndrome de Bardet-Biedl/diagnóstico , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/patologia , Fenótipo , Proteínas/genética , Rim/patologia
5.
Sci Rep ; 13(1): 7024, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120613

RESUMO

ANR (AraC negative regulators) are a novel class of small regulatory proteins commonly found in enteric pathogens. Aar (AggR-activated regulator), the best-characterized member of the ANR family, regulates the master transcriptional regulator of virulence AggR and the global regulator HNS in enteroaggregative Escherichia coli (EAEC) by protein-protein interactions. On the other hand, Rnr (RegA-negative regulator) is an ANR homolog identified in attaching and effacing (AE) pathogens, including Citrobacter rodentium and enteropathogenic Escherichia coli (EPEC), sharing only 25% identity with Aar. We previously found that C. rodentium lacking Rnr exhibits prolonged shedding and increased gut colonization in mice compared to the parental strain. To gain mechanistic insights into this phenomenon, we characterized the regulatory role of Rnr in the virulence of prototype EPEC strain E2348/69 by genetic, biochemical, and human organoid-based approaches. Accordingly, RNA-seq analysis revealed more than 500 genes differentially regulated by Rnr, including the type-3 secretion system (T3SS). The abundance of EspA and EspB in whole cells and bacterial supernatants confirmed the negative regulatory activity of Rnr on T3SS effectors. We found that besides HNS and Ler, twenty-six other transcriptional regulators were also under Rnr control. Most importantly, the deletion of aar in EAEC or rnr in EPEC increases the adherence of these pathogens to human intestinal organoids. In contrast, the overexpression of ANR drastically reduces bacterial adherence and the formation of AE lesions in the intestine. Our study suggests a conserved regulatory mechanism and a central role of ANR in modulating intestinal colonization by these enteropathogens despite the fact that EAEC and EPEC evolved with utterly different virulence programs.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Humanos , Animais , Camundongos , Virulência/genética , Escherichia coli Enteropatogênica/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fatores de Transcrição
6.
J Med Microbiol ; 72(4)2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37043376

RESUMO

Enterotoxigenic Escherichia coli (ETEC) strains produce at least one of two types of enterotoxins: the heat-labile (LT) and heat-stable (ST) toxins, which are responsible for the watery secretory diarrhoea that is a hallmark of the human ETEC infection. One regulatory system that controls the transcription of virulence genes in pathogenic bacteria is the CpxRA two-component system (TCS). We reported that the eltAB bicistronic operon, which encodes for the A and B subunits of LT, was repressed for the CpxRA TCS by direct binding of CpxR-P from -12 to +6 bp with respect to the transcription start site of eltAB. Moreover, the Cpx-response activation down-regulated the transcription of eltAB genes, and this negative effect was CpxRA-dependent. Our data show that CpxRA TCS is a negative regulator of the LT, one of the main virulence determinants of ETEC.


Assuntos
Toxinas Bacterianas , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Humanos , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Temperatura Alta , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Enterotoxinas/genética , Enterotoxinas/metabolismo , Infecções por Escherichia coli/microbiologia , Diarreia/microbiologia , Expressão Gênica
7.
Am J Respir Cell Mol Biol ; 69(2): 147-158, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36917789

RESUMO

Reduced expression and/or activity of Kv1.5 channels (encoded by KCNA5) is a common hallmark in human or experimental pulmonary arterial hypertension (PAH). Likewise, genetic variants in KCNA5 have been found in patients with PAH, but their functional consequences and potential impact on the disease are largely unknown. Herein, this study aimed to characterize the functional consequences of seven KCNA5 variants found in a cohort of patients with PAH. Potassium currents were recorded by patch-clamp technique in HEK293 cells transfected with wild-type or mutant Kv1.5 cDNA. Flow cytometry, Western blot, and confocal microscopy techniques were used for measuring protein expression and cell apoptosis in HEK293 and human pulmonary artery smooth muscle cells. KCNA5 variants (namely, Arg184Pro and Gly384Arg) found in patients with PAH resulted in a clear loss of potassium channel function as assessed by electrophysiological and molecular modeling analyses. The Arg184Pro variant also resulted in a pronounced reduction of Kv1.5 expression. Transfection with Arg184Pro or Gly384Arg variants decreased apoptosis of human pulmonary artery smooth muscle cells compared with the wild-type cells, demonstrating that KCNA5 dysfunction in both variants affects cell viability. Thus, in addition to affecting channel activity, both variants were associated with impaired apoptosis, a crucial process linked to the disease. The estimated prevalence of dysfunctional KCNA5 variants in the PAH population analyzed was around 1%. The data indicate that some KCNA5 variants found in patients with PAH have critical consequences for channel function, supporting the idea that KCNA5 pathogenic variants may be a causative or contributing factor for PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/metabolismo , Células HEK293 , Hipertensão Pulmonar/metabolismo , Canal de Potássio Kv1.5/genética , Canal de Potássio Kv1.5/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Artéria Pulmonar/patologia
8.
Rev Esp Cardiol (Engl Ed) ; 76(6): 460-467, 2023 Jun.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-36403940

RESUMO

INTRODUCTION AND OBJECTIVES: Risk stratification in pulmonary arterial hypertension (PAH) is essential to provide more aggressive treatment for patients at higher risk. Nevertheless, recently introduced simplified prognostic tools neglect the genetic background. Additionally, pulmonary veno-oclusive disease (PVOD) has never been considered in risk assessment strategies. METHODS: We analyzed consecutive patients in the Spanish registry of PAH (REHAP) genetically tested, between 2011 and 2022. We applied the 4-strata COMPERA 2.0 model, comparing these results with an amplified score including genetics. Cox regression models were compared using Harrel c-statistics. The application of the model was specifically tested in PVOD before inclusion. RESULTS: We identified 298 patients tested genetically among the group of idiopathic, familial, drug-induced PAH and PVOD patients in the REHAP registry. When we analyzed only patients with all available variables of interest at baseline (World Health Organization functional class, 6-minute walk test, B-type natriuretic peptide or N-terminal pro-B-type natriuretic peptide) and included in the 4-strata model (n=142), after a median follow-up of 58.2 months, 17.6% of patients died and 11.3% underwent lung transplant. The application of the 4-strata model in our population demonstrated a good prognostic capacity (Harrel c of 0.689), which was not improved by the introduction of genetics (c-index 0.690). This last model showed a tendency for a better identification of patients at intermediate-low and intermediate-high risk, and no differences between intermediate-high and high-risk strata. CONCLUSIONS: In this work, the addition of genetics to the COMPERA 4-strata model achieved a similar global prognostic capacity but changed the identification of different risk strata in a cohort of young genetically tested patients.


Assuntos
Transplante de Pulmão , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/genética , Peptídeo Natriurético Encefálico , Prognóstico , Teste de Caminhada
9.
Front Mol Biosci ; 9: 992313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325276

RESUMO

Background: ALMS1 is a ubiquitous gene associated with Alström syndrome (ALMS). The main symptoms of ALMS affect multiple organs and tissues, generating at last, multi-organic fibrosis in the lungs, kidneys and liver. TGF-ß is one of the main pathways implicated in fibrosis, controlling the cell cycle, apoptosis, cell migration, cell adhesion and epithelial-mesenchymal transition (EMT). Nevertheless, the role of ALMS1 gene in fibrosis generation and other implicated processes such as cell migration or cell adhesion via the TGF- ß pathway has not been elucidated yet. Methods: Initially, we evaluated how depletion of ALMS1 affects different processes like apoptosis, cell cycle and mitochondrial activity in HeLa cells. Then, we performed proteomic profiling with TGF-ß stimuli in HeLa ALMS1 -/- cells and validated the results by examining different EMT biomarkers using qPCR. The expression of these EMT biomarkers were also studied in hTERT-BJ-5ta ALMS1 -/-. Finally, we evaluated the SMAD3 and SMAD2 phosphorylation and cell migration capacity in both models. Results: Depletion of ALMS1 generated apoptosis resistance to thapsigargin (THAP) and C2-Ceramide (C2-C), and G2/M cell cycle arrest in HeLa cells. For mitochondrial activity, results did not show significant differences between ALMS1 +/+ and ALMS1 -/-. Proteomic results showed inhibition of downstream pathways regulated by TGF-ß. The protein-coding genes (PCG) were associated with processes like focal adhesion or cell-substrate adherens junction in HeLa. SNAI1 showed an opposite pattern to what would be expected when activating the EMT in HeLa and BJ-5ta. Finally, in BJ-5ta model a reduced activation of SMAD3 but not SMAD2 were also observed. In HeLa model no alterations in the canonical TGF-ß pathway were observed but both cell lines showed a reduction in migration capacity. Conclusion: ALMS1 has a role in controlling the cell cycle and the apoptosis processes. Moreover, the depletion of ALMS1 affects the signal transduction through the TGF-ß and other processes like the cell migration and adhesion capacity.

10.
Microbiol Spectr ; 10(5): e0271022, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36073960

RESUMO

The acquisition of Salmonella pathogenicity island 2 (SPI-2) conferred on Salmonella the ability to survive and replicate within host cells. The ssrAB bicistronic operon, located in SPI-2, encodes the SsrAB two-component system (TCS), which is the central positive regulator that induces the expression of SPI-2 genes as well as other genes located outside this island. On the other hand, CpxRA is a two-component system that regulates expression of virulence genes in many bacteria in response to different stimuli that perturb the cell envelope. We previously reported that the CpxRA system represses the expression of SPI-1 and SPI-2 genes under SPI-1-inducing conditions by decreasing the stability of the SPI-1 regulator HilD. Here, we show that under SPI-2-inducing conditions, which mimic the intracellular environment, CpxRA represses the expression of SPI-2 genes by the direct action of phosphorylated CpxR (CpxR-P) on the ssrAB regulatory operon. CpxR-P recognized two sites located proximal and distal from the promoter located upstream of ssrA. Consistently, we found that CpxRA reduces the replication of Salmonella enterica serovar Typhimurium inside murine macrophages. Therefore, our results reveal CpxRA as an additional regulator involved in the intracellular lifestyle of Salmonella, which in turn adds a new layer to the intricate regulatory network controlling the expression of Salmonella virulence genes. IMPORTANCE SPI-2 encodes a type III secretion system (T3SS) that is a hallmark for the species Salmonella enterica, which is essential for the survival and replication within macrophages. Expression of SPI-2 genes is positively controlled by the two-component system SsrAB. Here, we determined a regulatory mechanism involved in controlling the overgrowth of Salmonella inside macrophages. In this mechanism, CpxRA, a two-component system that is activated by extracytoplasmic stress, directly represses expression of the ssrAB regulatory operon; as a consequence, expression of SsrAB target genes is decreased. Our findings reveal a novel mechanism involved in the intracellular lifestyle of Salmonella, which is expected to sense perturbations in the bacterial envelope that Salmonella faces inside host cells, as the synthesis of the T3SS-2 itself.


Assuntos
Regulação Bacteriana da Expressão Gênica , Ilhas Genômicas , Camundongos , Animais , Sistemas de Secreção Tipo III/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Óperon , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
11.
Sci Rep ; 12(1): 16433, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180501

RESUMO

Due to their rarity and heterogeneity and despite the introduction of molecular features in the current WHO classification, clinical criteria such as those from the European Organization for Research and Treatment of Cancer (EORTC) and the Radiation Therapy Oncology Group (RTOG) are still being used to make treatment decisions in low-grade gliomas (LGG). Patients with diffuse low-grade glioma treated at our institution between 2002 and 2018 were analyzed, retrieving and assessing the degree of consistency between the EORTC and RTOG criteria, as well as the isocitrate dehydrogenase 1 and 2 (IDH) gene mutational status. Likewise, multivariate analyses were performed to ascertain the superiority of any of the factors over the others. One hundred and two patients were included. The degree of consistency between the RTOG and EORTC criteria was 71.6% (K = 0.426; p = 0.0001). Notably, 51.7% of those assigned to low risk by the EORTC were classified as high risk according to the RTOG classification. In multivariate analysis, only complete resection, age > 40 years, size and IDH mutation status were independently correlated with OS. When the RTOG and EORTC scores were entered into the model, only the EORTC model was independently associated with mortality. The degree of consistency between the EORT and RTOG criteria is low. Therefore, there is a need to integrate clinical-molecular scores to improve treatment decisions in LGG.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/terapia , Glioma/diagnóstico , Glioma/genética , Glioma/terapia , Humanos , Isocitrato Desidrogenase/genética , Mutação , Prognóstico
12.
Am J Respir Crit Care Med ; 206(12): 1522-1533, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35852389

RESUMO

Rationale: Despite the increased recognition of TBX4 (T-BOX transcription factor 4)-associated pulmonary arterial hypertension (PAH), genotype-phenotype associations are lacking and may provide important insights. Objectives: To compile and functionally characterize all TBX4 variants reported to date and undertake a comprehensive genotype-phenotype analysis. Methods: We assembled a multicenter cohort of 137 patients harboring monoallelic TBX4 variants and assessed the pathogenicity of missense variation (n = 42) using a novel luciferase reporter assay containing T-BOX binding motifs. We sought genotype-phenotype correlations and undertook a comparative analysis with patients with PAH with BMPR2 (Bone Morphogenetic Protein Receptor type 2) causal variants (n = 162) or no identified variants in PAH-associated genes (n = 741) genotyped via the National Institute for Health Research BioResource-Rare Diseases. Measurements and Main Results: Functional assessment of TBX4 missense variants led to the novel finding of gain-of-function effects associated with older age at diagnosis of lung disease compared with loss-of-function effects (P = 0.038). Variants located in the T-BOX and nuclear localization domains were associated with earlier presentation (P = 0.005) and increased incidence of interstitial lung disease (P = 0.003). Event-free survival (death or transplantation) was shorter in the T-BOX group (P = 0.022), although age had a significant effect in the hazard model (P = 0.0461). Carriers of TBX4 variants were diagnosed at a younger age (P < 0.001) and had worse baseline lung function (FEV1, FVC) (P = 0.009) than the BMPR2 and no identified causal variant groups. Conclusions: We demonstrated that TBX4 syndrome is not strictly the result of haploinsufficiency but can also be caused by gain of function. The pleiotropic effects of TBX4 in lung disease may be in part explained by the differential effect of pathogenic mutations located in critical protein domains.


Assuntos
Mutação com Ganho de Função , Pneumopatias , Humanos , Proteínas com Domínio T/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Fenótipo , Pneumopatias/genética , Mutação/genética , Genótipo
13.
NPJ Genom Med ; 7(1): 41, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835773

RESUMO

Bardet-Biedl syndrome (BBS) is an autosomal recessive ciliopathy characterized by extensive inter- and intra-familial variability, in which oligogenic interactions have been also reported. Our main goal is to elucidate the role of mutational load in the clinical variability of BBS. A cohort of 99 patients from 77 different families with biallelic pathogenic variants in a BBS-associated gene was retrospectively recruited. Human Phenotype Ontology terms were used in the annotation of clinical symptoms. The mutational load in 39 BBS-related genes was studied in index cases using different molecular and next-generation sequencing (NGS) approaches. Candidate allele combinations were analysed using the in silico tools ORVAL and DiGePred. After clinical annotation, 76 out of the 99 cases a priori fulfilled established criteria for diagnosis of BBS or BBS-like. BBS1 alleles, found in 42% of families, were the most represented in our cohort. An increased mutational load was excluded in 41% of the index cases (22/54). Oligogenic inheritance was suspected in 52% of the screened families (23/45), being 40 tested by means of NGS data and 5 only by traditional methods. Together, ORVAL and DiGePred platforms predicted an oligogenic effect in 44% of the triallelic families (10/23). Intrafamilial variable severity could be clinically confirmed in six of the families. Our findings show that the presence of more than two alleles in BBS-associated genes correlated in six families with a more severe phenotype and associated with specific findings, highlighting the role of the mutational load in the management of BBS cases.

14.
Biomolecules ; 12(6)2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35740972

RESUMO

Primary cilia are non-motile organelles associated with the cell cycle, which can be found in most vertebrate cell types. Cilia formation occurs through a process called ciliogenesis, which involves several mechanisms including planar cell polarity (PCP) and the Hedgehog (Hh) signaling pathway. Some gene complexes, such as BBSome or CPLANE (ciliogenesis and planar polarity effector), have been linked to ciliogenesis. CPLANE complex is composed of INTU, FUZ and WDPCP, which bind to JBTS17 and RSG1 for cilia formation. Defects in these genes have been linked to a malfunction of intraflagellar transport and defects in the planar cell polarity, as well as defective activation of the Hedgehog signalling pathway. These faults lead to defective cilium formation, resulting in ciliopathies, including orofacial-digital syndrome (OFDS) and Bardet-Biedl syndrome (BBS). Considering the close relationship, between the CPLANE complex and cilium formation, it can be expected that defects in the genes that encode subunits of the CPLANE complex may be related to other ciliopathies.


Assuntos
Ciliopatias , Proteínas Hedgehog , Polaridade Celular/genética , Cílios/genética , Cílios/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Transporte Proteico/genética
15.
Front Cardiovasc Med ; 9: 823133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35282351

RESUMO

Pulmonary Arterial Hypertension (PAH) is a rare disease caused by the obliteration of the pulmonary arterioles, increasing pulmonary vascular resistance and eventually causing right heart failure. Endothelin-1 (EDN1) is a vasoconstrictor peptide whose levels are indicators of disease progression and its pathway is one of the most common targeted by current treatments. We sequenced the EDN1 untranslated regions of a small subset of patients with PAH, predicted the effect in silico, and used a luciferase assay with the different genotypes to analyze its influence on gene expression. Finally, we used siRNAs against the major transcription factors (TFs) predicted for these regions [peroxisome proliferator-activated receptor γ (PPARγ), Krüppel-Like Factor 4 (KLF4), and vitamin D receptor (VDR)] to assess EDN1 expression in cell culture and validate the binding sites. First, we detected a single nucleotide polymorphism (SNP) in the 5' untranslated region (UTR; rs397751713) and another in the 3'regulatory region (rs2859338) that altered luciferase activity in vitro depending on their genotype. We determined in silico that KLF4/PPARγ could bind to the rs397751713 and VDR to rs2859338. By using siRNAs and luciferase assays, we determined that PPARγ binds differentially to rs397751713. PPARγ and VDR Knock-Down (KD) increased the EDN1 mRNA levels and EDN1 production in porcine aortic endothelial cells (PAECs), while PPARγ and KLF4 KD increased the EDN1 production in HeLa. In conclusion, common variants in EDN1 regulatory regions could alter EDN1 levels. We were able to validate that PPARγ binds in rs397751713 and is a key regulator of EDN1. In addition, KLF4 and VDR regulate EDN1 production in a cell-dependent manner, but VDR does not bind directly to the regions we studied.

16.
Virus Evol ; 8(1): veac008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242361

RESUMO

A detailed understanding of how and when severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission occurs is crucial for designing effective prevention measures. Other than contact tracing, genome sequencing provides information to help infer who infected whom. However, the effectiveness of the genomic approach in this context depends on both (high enough) mutation and (low enough) transmission rates. Today, the level of resolution that we can obtain when describing SARS-CoV-2 outbreaks using just genomic information alone remains unclear. In order to answer this question, we sequenced forty-nine SARS-CoV-2 patient samples from ten local clusters in NW Spain for which partial epidemiological information was available and inferred transmission history using genomic variants. Importantly, we obtained high-quality genomic data, sequencing each sample twice and using unique barcodes to exclude cross-sample contamination. Phylogenetic and cluster analyses showed that consensus genomes were generally sufficient to discriminate among independent transmission clusters. However, levels of intrahost variation were low, which prevented in most cases the unambiguous identification of direct transmission events. After filtering out recurrent variants across clusters, the genomic data were generally compatible with the epidemiological information but did not support specific transmission events over possible alternatives. We estimated the effective transmission bottleneck size to be one to two viral particles for sample pairs whose donor-recipient relationship was likely. Our analyses suggest that intrahost genomic variation in SARS-CoV-2 might be generally limited and that homoplasy and recurrent errors complicate identifying shared intrahost variants. Reliable reconstruction of direct SARS-CoV-2 transmission based solely on genomic data seems hindered by a slow mutation rate, potential convergent events, and technical artifacts. Detailed contact tracing seems essential in most cases to study SARS-CoV-2 transmission at high resolution.

17.
Front Microbiol ; 12: 743594, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659176

RESUMO

Klebsiella oxytoca is a resident of the human gut. However, certain K. oxytoca toxigenic strains exist that secrete the nonribosomal peptide tilivalline (TV) cytotoxin. TV is a pyrrolobenzodiazepine that causes antibiotic-associated hemorrhagic colitis (AAHC). The biosynthesis of TV is driven by enzymes encoded by the aroX and NRPS operons. In this study, we determined the effect of environmental signals such as carbon sources, osmolarity, and divalent cations on the transcription of both TV biosynthetic operons. Gene expression was enhanced when bacteria were cultivated in tryptone lactose broth. Glucose, high osmolarity, and depletion of calcium and magnesium diminished gene expression, whereas glycerol increased transcription of both TV biosynthetic operons. The cAMP receptor protein (CRP) is a major transcriptional regulator in bacteria that plays a key role in metabolic regulation. To investigate the role of CRP on the cytotoxicity of K. oxytoca, we compared levels of expression of TV biosynthetic operons and synthesis of TV in wild-type strain MIT 09-7231 and a Δcrp isogenic mutant. In summary, we found that CRP directly activates the transcription of the aroX and NRPS operons and that the absence of CRP reduced cytotoxicity of K. oxytoca on HeLa cells, due to a significant reduction in TV production. This study highlights the importance of the CRP protein in the regulation of virulence genes in enteric bacteria and broadens our knowledge on the regulatory mechanisms of the TV cytotoxin.

18.
Cells ; 10(6)2021 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199176

RESUMO

Pulmonary Arterial Hypertension (PAH) is a severe complication of Connective Tissue Disease (CTD), with remarkable morbidity and mortality. However, the molecular and genetic basis of CTD-PAH remains incompletely understood. This study aimed to screen for genetic defects in a cohort of patients with CTD-PAH, using a PAH-specific panel of 35 genes. During recruitment, 79 patients were studied, including 59 Systemic Sclerosis patients (SSc) and 69 females. Disease-associated variants were observed in nine patients: 4 pathogenic/likely pathogenic variants in 4 different genes (TBX4, ABCC8, KCNA5 and GDF2/BMP9) and 5 Variants of Unknown Significance (VUS) in 4 genes (ABCC8, NOTCH3, TOPBP1 and CTCFL). One patient with mixed CTD had a frameshift pathogenic variant in TBX4. Two patients with SSc-PAH carried variants in ABCC8. A patient diagnosed with Systemic Lupus Erythematous (SLE) presented a pathogenic nonsense variant in GDF2/BMP9. Another patient with SSc-PAH presented a pathogenic variant in KCNA5. Four patients with SSc-PAH carried a VUS in NOTCH1, CTCFL, CTCFL and TOPBP1, respectively. These findings suggest that genetic factors may contribute to Pulmonary Vascular Disease (PVD) in CTD patients.


Assuntos
Lúpus Eritematoso Sistêmico , Mutação , Hipertensão Arterial Pulmonar , Escleroderma Sistêmico , Feminino , Humanos , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/genética , Masculino , Pessoa de Meia-Idade , Hipertensão Arterial Pulmonar/etiologia , Hipertensão Arterial Pulmonar/genética , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/genética
19.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33850023

RESUMO

The autophagy protein ATG2, proposed to transfer bulk lipid from the endoplasmic reticulum (ER) during autophagosome biogenesis, interacts with ER residents TMEM41B and VMP1 and with ATG9, in Golgi-derived vesicles that initiate autophagosome formation. In vitro assays reveal TMEM41B, VMP1, and ATG9 as scramblases. We propose a model wherein membrane expansion results from the partnership of a lipid transfer protein, moving lipids between the cytosolic leaflets of apposed organelles, and scramblases that reequilibrate the leaflets of donor and acceptor organelle membranes as lipids are depleted or augmented. TMEM41B and VMP1 are implicated broadly in lipid homeostasis and membrane dynamics processes in which their scrambling activities likely are key.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Autofagossomos/metabolismo , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/fisiologia , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Proteínas de Membrana/metabolismo , Membranas/metabolismo , Modelos Biológicos , Modelos Teóricos , Biogênese de Organelas , Proteínas de Transferência de Fosfolipídeos/fisiologia
20.
Genes (Basel) ; 12(2)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669459

RESUMO

Alström syndrome (ALMS) is an ultrarare disease with an estimated prevalence lower than 1 in 1,000,000. It is associated with disease-causing mutations in the Alström syndrome 1 (ALMS1) gene, which codifies for a structural protein of the basal body and centrosomes. The symptomatology involves nystagmus, type 2 diabetes mellitus (T2D), obesity, dilated cardiomyopathy (DCM), neurodegenerative disorders and multiorgan fibrosis. We refined the clinical and genetic diagnosis data of 12 patients from 11 families, all of them from Spain. We also studied the allelic frequency of the different variants present in this cohort and performed a haplotype analysis for the most prevalent allele. The genetic analysis revealed 2 novel homozygous variants located in the exon 8, p.(Glu929Ter) and p.(His1808GlufsTer20) in 2 unrelated patients. These 2 novel variants were classified as pathogenic after an in silico experiment (computer analysis). On the other hand, 2 alleles were detected at a high frequency in our cohort: p.(Tyr1714Ter) (25%) and p.(Ser3872TyrfsTer19) (16.7%). The segregation analysis showed that the pathogenic variant p.(Tyr1714Ter) in 3 families is linked to a rare missense polymorphism, p.(Asn1787Asp). In conclusion, 2 novel pathological mutations have been discovered in homozygosis, as well as a probable founder effect in 3 unrelated families.


Assuntos
Síndrome de Alstrom/genética , Proteínas de Ciclo Celular/genética , Efeito Fundador , Obesidade/genética , Adulto , Síndrome de Alstrom/patologia , Feminino , Haplótipos/genética , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Obesidade/epidemiologia , Obesidade/patologia , Linhagem , Espanha/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...